
 1

 www.faiacorp.com

Tokenized Agent Setup Guide
Brendan Lee

Tokenized is building something on a seriously different level to what I have seen from any other
entrant to the token game. James Belding has a grand vision and has assembled an A grade team
capable of creating something of colossal potential which behaves in a manner unlike anything a
business has seen before, but which can still be described using familiar words and concepts. To
understand it we must first look at the ledger that Tokenized uses as its foundation.

This is the first of a series of 5 blog posts that will explore the Tokenized smart contract architecture
and take users through how to set up the necessary infrastructure to set up and run a smart contract
and create a tokenized asset.

The ledger
The Bitcoin ledger is a globally distributed data structure managed by Bitcoin miners. The Bitcoin
Protocol determines a few underlying rules stipulating how users interact with the ledger, but for
the intents and purposes of general use, it is reasonable to consider the ledger as a completely open
place where anybody can record information that is useful to them.

An integral part of the ledger is the Bitcoin currency which can be exchanged on the ledger in Bitcoin
transactions. These transactions use cryptographic hash functions and a highly secure Elliptic Curve
Digital Signature Algorithm to protect the ownership rights associated with that currency.
In addition to the exchange of Bitcoins, the ledger can also be used to create tokenized
representations of other asset types and allow those to be traded with the same levels of security as
Bitcoins.

The fundamental difference between Bitcoins and other token types is that the bitcoin tokens are
issued by Bitcoin miners to each other as rewards for working on building the ledger. They control
the processes and protocols by which those tokens can be exchanged on the ledger and have the
right as a collective to approve or not to approve your transaction. When something from the real
world is tokenized, the tokens are issued by a controlling party. This might be a company who issues
shares, a bank who tokenizes an asset or a venue who sells a ticket to a concert or an event. These
tokens operate under a completely different set of rules to those which govern the exchange of
Bitcoins on the Bitcoin SV network.

This is where second layer protocols are needed. A second layer protocol resides inside Bitcoin
transactions, using the immutability and security of Bitcoin transactions as a means to manage the
changing of ownership rights of real-world items. There are several token protocols that exist for
Bitcoin however none are as complete or as ready for managing the requirements of businesses
operating in lawful, regulated environments as the Tokenized Protocol. The Tokenized Protocol is
also inherently more efficient at scale than competing protocols, and is also a fundamentally fairer
protocol that can stop all technical forms of bad behaviour that an issuing entity could be tempted
to engage in, like market manipulation or ignoring some transactions while permitting others. The
request-response mechanism of the Tokenized Protocol is not only fairer for token holders, it also
represents a revolution in the way that regulators (and other interested parties) can monitor for
compliance with rules and regulations.

 2

 www.faiacorp.com

The Tokenized Protocol
The introduction of the Tokenized Protocol means that users can now create notes on pages owned
by smart contracts in order to manage the ownership rights of tokens. The smart contract uses these
ledger records to manage its tokens. The issuer owns the smart contract, and dependent on the
rules of the contract, has the power to send instructions to the agent that override requests from
users. To police the use of these features, the total history of every smart contract can be audited by
third parties.

Tokenized have a sophisticated encryption scheme that allows the contents of a contract to be kept
private despite being stored in public. Every request to a smart contract is written to a contract’s
address for evaluation and the responses from contracts come from those same addresses. These
contract addresses will serve as anchor points for business conducted by the corporations of the
future.

The Tokenized Smart Contract Agent
The tokenized Smart Contract Agent is an autonomous software application that runs on a server

connected to the internet. The contract agent can be operated by the entity issuing a smart contract,

or by a third-party provider as a service. The only means to interact with an agent is by writing

instructions to the Bitcoin ledger. They do not take instructions via Internet Protocol giving them a

very small attack surface.

Currently the smart contract agents require users to run a BitcoinSV node which communicates with

the tokenized Spy Node system. This is a lightweight network monitor that the agent uses to filter

network traffic to see transactions being sent to it by users. Longer term, Tokenized plans to

introduce an API service for spy nodes which will remove the need for users to run their own nodes,

significantly reducing the operational overhead in a scaled Bitcoin scenario.

Entities
Entities are at the core of the Tokenized system. Entities are defined during the establishment of a

smart contract and are used to build out on-chain representations of real-world legal entities and

ownership structures, like public and private companies, partnerships, trusts, and even government

agencies, enabling organizations to define and permissioned control to people of importance to their

operation such as directors, lawyers, accountants and more.

Smart Contracts
Tokenized smart contracts are agreements established between a real-world entity (e.g. a company

or individual) and an agent which outline a set of data points and rules which the agent will use to

govern interactions with the users of that smart contract. This includes datapoints describing the

entity setting up the contract and outlines rules such as limits on token issuance, voting rights, and

the means used to manage ownership of the contract and the assets it manages. This information is

sent to the agent inside on-chain Tokenized request actions, which the agent evaluates and

acknowledges in its own on-chain responses.

Smart contracts can be used to manage one or many asset types for their owners and can be

established in parent-child relationships allowing for complex contract trees to be established. This is

useful for corporations who might have a single umbrella contract to manage the company’s shares,

board of directors and more, with sub-contracts existing for diverse purposes such as delivering a

user interface needing tokens, managing logistics or warranty and more.

 3

 www.faiacorp.com

Assets
Assets controlled by these agents can be anything from movie tickets to shares, tokenized real
estate or even national currency issued by central banks. Each asset is created with a set number of
tokens to represent it. Assets can be fungible (many identical tokens) or non-fungible (single unique
token) and represent almost anything that we use to exchange goods and services in the real world.
Everyone with access to Bitcoin will now be able to integrate the rapid, immutable and low-cost
exchange of all kinds of tokenized goods and services.

Ownership rights can be conferred upon goods, services, and equity and then managed by the token
issuer in a simple and transparent way. Each contract is programmed publicly through on-chain
actions detailing its purpose, who owns it, how its voting rights are managed and more. All the
details needed to build a legal foundation for the establishment of an entity that holds and manages
tokenized ownership rights can be established in a Tokenized smart contract.

Using Tokenized – A beginner’s guide
Today we have released a set of guides that go through the basics of setting up a Tokenized smart

contract agent on your local machine, building a smart contract, and defining, issuing and

distributing a set of assets. They will be officially published on a weekly basis as our Faia blog,

however so people can start using the information straight away, all four posts are currently

available via the following links:

 4

 www.faiacorp.com

Setting up the Tokenized Smart Contract Agent
To run the Tokenized smart contract, you will need to prepare a suitable environment.

During this process, we tried to demonstrate the smart contract operating on the 3 major operating

systems including:

• Windows 10

• Linux

• MacOS

Windows 10
Since the inception of the BitcoinSV node client, the team behind the effort have focussed

exclusively on developing for Linux as this is what was requested by their financial sponsors.

Windows 10 has what is called ‘Windows Subsystem for Linux’ or WSL which allows users to install

Linux variants as a subsystem to Windows.

There are caveats to this and the drive mounting systems that are used caused us several issues

when trying to operate a Bitcoin node. We found that the WSL environment was unable to

synchronise the BSV blockchain.

In addition, Tokenized do not have binaries for the smart contract agent or CLI utility for Windows.

For these reasons, we do not recommend setting up either BitcoinSV or Tokenized using the

Windows platform at this time.

Setting up BitcoinSV
A smart contract agent requires access to a BitcoinSV node to send and receive Bitcoin transactions

on the network. Currently Tokenized do not offer a public facing node for this service so users need

to have access to a node that is running with indexing and a full copy of the BSV blockchain.

MacOS
The BitcoinSV node client is not available for MacOS at this time. At this time, we would recommend

using Docker to install and run the BitcoinSV node software for MacOS. Full instructions are available

thanks to the BitcoinSV node team in the following Github repository:

https://github.com/bitcoin-sv/docker-sv/tree/master

Once installed, use the following settings for your bitcoin.conf file:

txindex=1

server=1

listen=1

rpcuser=brendan

rpcpassword=securepassword

rpcallowip=127.0.0.1

txindex=1 tells the node to index all transactions in the blockchain. This is needed to allow the

node to request it’s own transactions via RPC.

server=1 tells the node to accept RPC commands

listen=1 puts the node into listening mode, enabling any external IP to make RPC requests

https://github.com/bitcoin-sv/docker-sv/tree/master

 5

 www.faiacorp.com

The RPC settings will be used by the Tokenized agent’s node monitor to retrieve its transactions

from the network

Linux
For our system, we used a Digital Ocean droplet with 6 CPUs, 16GB RAM and 320GB of storage

configured with the latest version of Ubuntu however anyone running Linux on their own PC with at

least 8GB of RAM, 2CPUs and 200GB of free hard drive space should also be able to do the same.

Setting up the droplet was extremely easy once our account was established. Check out:

www.digitalocean.com.

We used PuTTY to connect which is available here:

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

When your Droplet is established, and each time you log in, you will be given root access. To use the

smart contract you must have a separate user setup. Create a new user as follows:

$ adduser username

You will be asked to enter a password for your new user and a few other details which you can

choose to leave blank. Each time you generate a new instance of your Command Line interface, you

will need to change to your new user profile which is as simple as:

$ su username

The installation of BitcoinSV node is a snap.

1. Download the most recent stable release using wget as follows:

$ wget https://download.bitcoinsv.io/bitcoinsv/0.2.1/bitcoin-sv-0.2.1-

x86_64-linux-gnu.tar.gz

2. Unzip the binary

$ tar -xf bitcoin-sv-0.2.1-x86_64-linux-gnu.tar.gz

3. Create and edit your bitcoin.conf file

touch ~/.bitcoin/bitcoin.conf

nano ~/.bitcoin/bitcoin.conf

Here are my settings:

txindex=1

server=1

listen=1

rpcuser=brendan

rpcpassword=securepassword

rpcallowip=127.0.0.1

txindex=1 tells the node to index all transactions in the blockchain. This is needed to allow the

node to request it’s own transactions via RPC.

server=1 tells the node to accept RPC commands

listen=1 puts the node into listening mode, enabling any external IP to make RPC requests

http://www.digitalocean.com/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://download.bitcoinsv.io/bitcoinsv/0.2.1/bitcoin-sv-0.2.1-x86_64-linux-gnu.tar.gz
https://download.bitcoinsv.io/bitcoinsv/0.2.1/bitcoin-sv-0.2.1-x86_64-linux-gnu.tar.gz

 6

 www.faiacorp.com

The RPC settings will be used by the Tokenized agent’s node monitor to retrieve its transactions

from the network

4. Start Bitcoin

cd bitcoin-sv-0.2.1/bin

./bitcoind

Once you have started Bitcoin, it will commence the process of synchronising. This process involves

downloading the full blockchain, indexing all the transactions as it goes. On my home internet

connection using my laptop this process took roughly 4 days.

You can check progress by typing

sudo ./bitcoin-cli getblockchaininfo

in the ~/bitcoin-sv-0.2.1/bin folder.

Check what the latest blockheight is on www.whatsonchain.com to see how far along you are.

Download and install Golang
Before you can use the Tokenized Smart Contract Agent you will need to install Golang. Golang is

available for all major operating systems.

MacOS
In MacOS, the following process can be used to install Golang:

Download Golang

Visit www.golang.org and download the latest MAC PKG file. Open this and follow the prompts to

install the Go tools. This package installs your GO distribution to /usr/local/go and set your PATH

environment variable. You’ll need to restart any terminal windows you have open for the settings to

take effect.

Linux
In our Linux example, I used the following process:

Install linux upgrades

These commands will apply the latest updates to the Linux subsystem:

$ sudo apt-get update

$ sudo apt-get -y upgrade

Download Golang

This command will download version 1.13.5 of Golang, but you should check the www.golang.org

website to make sure you are getting the most up-to-date version:

$ wget https://dl.google.com/go/go1.13.5.linux-amd64.tar.gz

Usually they are consistent in their naming so it suffices to simply update the version number in the

file name.

Extract and install

Now that you have downloaded Golang, use the following command to extract the archive:

$ sudo tar -xvf go1.13.5.linux-amd64.tar.gz

http://www.whatsonchain.com/
http://www.golang.org/
http://www.golang.org/
https://dl.google.com/go/go1.13.5.linux-amd64.tar.gz

 7

 www.faiacorp.com

And now move the files into the usr/local folder:

$ mv go /usr/local

Setup the Go environment

Now that Go is installed, you will need to make some modifications to your Linux environment by

setting the GOROOT, GOPATH and PATH variables in your ~/.profile file.

To edit, I used nano:

$ nano ~/.profile

Add these three lines to the end of the file (feel free to change the GOPATH to the location you wish

to use for your projects):

GOROOT=/usr/local/go

GOPATH=$HOME/go

PATH=$GOPATH/bin:$GOROOT/bin:$PATH

Now that you have edited your .profile file, each time you open a new command line you can

load the updated settings by typing:

$. ~/.profile

Ready to go
And with that, your environment should be ready to go. Next week we will look at how to install and

configure the Tokenized Smart Contract Agent.

 8

 www.faiacorp.com

Setting up the Tokenized Smart Contract Agent
As we discussed in our first post, the Tokenized Smart Contract Agent is an autonomous process that

responds to commands written to its address on the ledger. Every request that pays the correct fees

gets a response, and any request that is a correctly formatted tokenized request which asks the

contract to do something which is within its defined ruleset is followed by a response action from

the agent. If someone tries to do something outside the rules, the agent responds with a rejection

action. All actions are encapsulated within Bitcoin transactions, giving attackers almost no surface

from which to attack a tokenized smart contract.

The agent is currently still in beta so there isn’t yet a simple binary to download so you will need to

download and install it manually. Once again, this installation is being done in the Microsoft

Windows Linux Subsystem, which has proven quite smooth and robust to use!

These instructions are applicable to users of both Linux and Windows operating systems.

Downloading the smart contract code
Once you have installed go, downloading the code and binaries is as simple as typing:

go get github.com/tokenized/smart-contract/cmd/...

from a bash prompt. The first time this can take a while (almost half an hour for me) but once

you’ve downloaded the full dependency set it tends to go a lot faster.

If you are keen, you can download the sourcecode and build the binaries yourself, and there are

detailed instructions on how to do this at the Tokenized Github repository:

https://github.com/tokenized/smart-contract

Smart Contract configuration
Once you have the smart contract installed you must setup the agent’s configuration file. I am going

to set this smart contract up to manage shares in my Coinstorage business which sells the

SAFEWORDS key backup kit.

I started by copying the example config file provided with the source into the ~/.contract folder

using the following command:

$ cp conf/dev.env.example ~/.contract/coinstorage.env

I then opened the file in ‘nano’ to make the required changes:

$ nano ~/.contract/coinstorage.env

This is what my .env file looks like now:

Name of smartcontract instance.

export OPERATOR_NAME=CoinstorageGuru

export VERSION=0.1.0

Private key in WIF format (this is not the real key)

export PRIV_KEY=5K1mPd9G7oRALRietnyY2HrRFEFBDHeyHeyHeeeeeyy

The receiving address for contract fees (Not the smart contract address)

export FEE_ADDRESS=1EeG8jTbBzKWqRNbtWjcav5VKMnJ1ZK7wf

The cost of a request

https://github.com/tokenized/smart-contract

 9

 www.faiacorp.com

export FEE_VALUE=1000

#The chain being used for this contract

export BITCOIN_CHAIN=mainnet

My BitcoinSV node details

export RPC_HOST=127.0.0.1:8332

export RPC_USERNAME=brendan

export RPC_PASSWORD=securepassword

Tell spynode which node to connect to

export NODE_ADDRESS=127.0.0.1:8333

export NODE_USER_AGENT="/Tokenized:0.1.0/"

Checkpoint at Block 610,000

export

START_HASH="000000000000000006728585ad384293914ee5cce36223594b07210aaef0617

2"

export NODE_STORAGE_ROOT=./tmp/contract

export NODE_STORAGE_BUCKET=standalone

Where to store contract state

export CONTRACT_STORAGE_ROOT=./tmp/contract

export CONTRACT_STORAGE_BUCKET=standalone

export LOG_FILE_PATH=./tmp/contract/main.log

Starting the agent
Once you have created the export file with the correct options for your configuration, starting the

smart contract agent is as simple as executing the following command from your user directory:

$ source .contract/coinstorage.env && smartcontractd

Congratulations, you are now running the Tokenized Smart Contract Agent.

Setting up the client tool
The tokenized package comes with a simple client tool that allows you to build and send Tokenized

packets from within your CLI.

To configure this, start by creating a folder for your config file:

$ mkdir ~/.client

Now copy the example file across into your new directory:

$ cp ~/go/src/github.com/tokenized/src/smart-

contract/conf/cli.dev.env.example ~/.client/cli.dev.env

Now use nano to edit the file:

$ nano ~/.client/cli.dev.env

I used the following settings:

Config for a standalone contract instance.

 10

 www.faiacorp.com

the local node to connect to.

export CLIENT_NODE_ADDRESS=127.0.0.1:8333

export CLIENT_NODE_USER_AGENT="/TokenizedClient:0.1.0/"

Sync contract from Block 610,000

export

CLIENT_START_HASH="000000000000000006728585ad384293914ee5cce36223594b07210a

aef06172"

Your key in WIF format (not my key)

export CLIENT_WALLET_KEY=5JfFnjW7kAFVZCckJMLgKEA6ATJgdnY9HeyHeyHeeeeyyyyyyy

Address of contract in standard bitcoin format

export CLIENT_CONTRACT_ADDRESS= 1N9nJMPfJGnhcWrYAtY2DvsHb3cXfVmsTq

Where to store state files

export CLIENT_PATH=./tmp/client

export CLIENT_LOG_FILE_PATH=./tmp/client/main.log

export BITCOIN_CHAIN=mainnet

NOTE: When inputting the CLIENT_CONTRACT_ADDRESS make sure to use the COMPRESSED

ADDRESS format as the Smart Contract will not see any transactions sent to the address that

corresponds to the uncompressed address.

With this file, we can now execute commands via the Smartcontract tool to build and send on-chain

actions to interact with the agent.

You can set the CLIENT_START_HASH to a value from a recent block in order to reduce the time it

will take to synchronise. For this project, we will start from block 610,000 which was mined on the

23rd of November 2019.

Funding and synchronising the Client
To prepare for the creation of your smart contract, your client must have funds. Simply send a small

amount (say 10c) to the address that corresponds to the WIF in your client definition file. Once you

have sent the funds, execute the following from the command line in your user directory:

$ source ~/.client/cli.dev.env && smartcontract sync

It took about 5 minutes to synchronise with the funds I sent.

Next week we will look at how to fund our administrative address and communicate with the smart

contract to create a Smart Contract.

 11

 www.faiacorp.com

Creating a Tokenized Smart Contract
Depending on the type of token being issued, contracts require varying levels of documentation and

complexity. The smart contract is adaptable and can represent anything from very simple

agreements between friends right up to the definition of corporate or state level bodies.

The smart contract is defined in a request action called a Contract Offer. To learn more about how a

Contract Offer is structured, check out the documentation at:

https://tokenized.com/docs/protocol/actions#action-contract-offer

The contract offer action contains all necessary information to establish a legal contract including

the legal text of the contract, information on the type of contract, links to supporting documentation

and more.

Importantly the contract includes data on the issuer that is asking the agent to establish the content.

The issuer data is contained in a compound data structure called an ‘Entity’ which can be expanded

to define a company structure including multiple personnel, addresses and other pertinent details as

required to establish the legal identity for the contract.

For more information on the Entity type, have a look at the docs:

https://tokenized.com/docs/protocol/actions#type-entity

The contract offer can also include details such as data on the contract operator (also an entity

which can be a third party distinct from the contract issuer), details of any oracles that might be

required to confirm the details of the administrator, a blockheight for the oracle to sign, fee settings

for the contract and any rules needed for asset management such as the quantity of different asset

types that can be managed, voting rights and more.

Building the Contract Offer action
Before we can start using the smart contract, we must set up the contract offer that we are going to

send to the agent. This is prepared as a .json file. For the contract offer I will be making, my file

looks like the following:

{

 "ContractName" : "Coinstorage Pty. Ltd.",

 "BodyOfAgreementType" : 2,

"BodyOfAgreement" :

"5468697320636f6e7472616374206d616e6167657320746865206f776e6572

736869702072696768747320746f20436f696e73746f7261676520507479204

c746420616e6420616c6c206f7468657220746f6b656e73207573656420666f

7220707572706f7365732073756368206173206c6f79616c74792070726f677

2616d732c207072697a657320616e6420636f75706f6e206469737472696275

74696f6e2e",

 "ContractType" : "Shareholder Agreement and Token Management",

"Issuer" : { "Name" : "Coinstorage Pty Ltd", "Type" : "C", "Street" :

"P.O. Box 89", "City" : "Toowong", "TerritoryStateProvinceCode"

: "QLD ", "PostalZIPCode" : "4066 ", "EmailAddress" :

"info@coinstorage.guru", "Management" : [{"Type" : 5, "Name"

: "Brendan Lee"}], "DomainName" : "www.coinstorage.guru" },

"IssuerLogoURL" : "https://coinstorage.guru/wp-

content/uploads/2018/02/coinstorage-logo-verson-3.png",

 "ContractFee" : 1000,

 "MasterAddress" : "20c8abe70379b2b6801bf38d477d9249dfc2a9ba9c"

}

https://tokenized.com/docs/protocol/actions#action-contract-offer
https://tokenized.com/docs/protocol/actions#type-entity

 12

 www.faiacorp.com

This is a very simple contract set up in the name of my company, Coinstorage Pty Ltd.

The BodyOfAgreement type indicates that the wording of the contract is in the Tokenized Body of

Agreement Format which for the purposes of this contract is just the following text encoded in hex:

“This contract manages the ownership rights to Coinstorage Pty Ltd and all

other tokens used for purposes such as loyalty programs, prizes and coupon

distribution.”

While this is a simple example, it is possible to create full legal documentation for a smart contract in

Markdown format and convert that text to hex for insertion in your smart contract.

The contract type is specified by the issuer and should be an appropriate description of what the

contract does.

Issuer refers to the real-world owner of the smart contract and the responsible party for any tokens

it issues. In this example, it has the legal details of my company, Coinstorage Pty Ltd and lists myself

as CEO.

ContractFee sets the price for request actions to be looked at by the contract.

MasterAddress gives an address from which a command to migrate the contract to a new address

can be issued. This is a useful backup in cases where a contract’s private key has been lost or

compromised. This is the public key in HEX format. To generate this value, use the following

command in your user directory:

$ smartcontract convert yourKeyHere

and adding 20 to the start to tell the tool that it is a P2PKH address.

Keep in mind that fixed width fields such as TerritoryStateProvinceCode must be the expected length

which is achieved here by adding spaces.

While this contract is quite simple, the structure of the Contract Offer and entities allows for

corporation or state level structures to be defined.

Checking the Contract Offer
Before sending the Contract Offer, check that your JSON builds properly using:

$ smartcontract build c1 ~/coinstorage/C1_coinstorage.json --hex

If you JSON file has no issues, it should return the hex corresponding to your contract offer.

Now build the TX using:

$ smartcontract build c1 ~/coinstorage/C1_coinstorage.json --tx

This should return the full tx structure including the funding coin and change output.

Send your contract offer
Send your contract offer to the network using:

$ smartcontract build c1 ~/coinstorage/C1_coinstorage.json --tx --send

For my contract, the corresponding TXID is:

b6627a3c734db0e7672c19bf9308cb7550a617c2288fde386125949573e87322

https://whatsonchain.com/tx/b6627a3c734db0e7672c19bf9308cb7550a617c2288fde386125949573e87322

 13

 www.faiacorp.com

I was very surprised how fast it was. As soon as I could refresh the page on www.whatsonchain.com

I saw the smart contract’s response which has TXID:

c7c5d1bf05c291fdc6b8c9089444b45cf8841613eec602c207516c5d48619a2c

You can see that it has properly mirrored all the settings from my transaction.

To update your tool to see the response transation use the sync command:

$ source ~/.client/cli.dev.env && smartcontract sync

Congratulations
Congratulations, you have created a Smart Contract using the Tokenized Smart Contract agent. Next

week we will look at how to create and send assets using the platform.

http://www.whatsonchain.com/
https://whatsonchain.com/tx/c7c5d1bf05c291fdc6b8c9089444b45cf8841613eec602c207516c5d48619a2c

 14

 www.faiacorp.com

Tokenizing Assets
Tokenized smart contracts are for the purpose of managing real world assets in a way that reflects

the real-world way in which that asset is being managed.

The first version of the Tokenized Smart Contract Agent supports the following asset types with the

associated Asset Code in brackets:

• Membership Tokens (MEM)

• Common Shares (SHC)

• Currency (CUR)

• Coupons (COU)

• Loyalty Points (LOY)

• Admission Tickets (TIC)

• Casino Chips (CHP)

While these 7 types are supported by the beta version of the agent, the Tokenized Protocol can

support any need and the team have a list of over 50 different types of token being prepared

including coverage of all general financial products used in retail and enterprise banking, investment

and more.

For more information on the asset types supported by the current Tokenized agent, please visit:

https://tokenized.com/docs/protocol/assets

For this example, I will create a set of 5 common shares to manage ownership rights for Coinstorage

Pty. Ltd. Keep in mind, these are being created using the tokenized.test protocol identifier and as

such should not be considered binding.

Asset Structure
Assets are defined using a structure held in the Asset Payload. The payload contains all the necessary

information that an asset of this type would be likely to need. This can include information on what

the tokens are, how they are to be used and more.

Creating the Asset Payload
Every different asset type has a payload which specifies fields that are specific to that type of asset.

These can include any type of information relevant to the management of that asset.

To learn more about the payloads for established asset types, see:

 https://tokenized.com/docs/protocol/assets#field-aliases

The Smart Contract tool can build the hex payload we need to create the asset. First we need a JSON

file containing the necessary information. I created the following:

$ nano ~/coinstorage/csgru.json

The definition needs only the ticker and description, with the date and ISIN left blank:

{

 "Ticker" : "CSGRU",

 "Description" : "Founders shares in Coinstorage Guru"

}

https://tokenized.com/docs/protocol/assets
https://tokenized.com/docs/protocol/assets#field-aliases

 15

 www.faiacorp.com

Now use the Smart Contract tool to build the hexadecimal payload:

$ smartcontract build SHC coinstorage/csgru.json --hex

Asset : SHC

120543534752552223466f756e646572732073686172657320696e20436f696e73746f72616

7652047757275

This payload can now be inserted into the Asset Definition action.

Building the Asset Definition Action
The Asset Definition action is assembled in a JSON file. I created the following:

$ nano ~/coinstorage/A1_coinstorage.json

Assets are created by sending an Asset Definition action (A1) to the Smart Contract agent using an

established smart contract. Learn more about this action here:

https://tokenized.com/docs/protocol/actions#action-asset-definition

Similarly, to the Contract Offer, the data must be contained in a .JSON file ready to be written into a

tokenized transaction.

This is the layout of my JSON file:

{

 "TransfersPermitted" : true,

 "EnforcementOrdersPermitted" : true,

 "VotingRights" : true,

 "TokenQty" : 5,

 "AssetType" : "SHC",

 "AssetPayload" :

"120543534752552228466f756e646572732073686172657320696e20436f69

6e73746f72616765205074792e204c74642e"

}

Transfer Permitted allows this token to be transferred by third parties. This is good for transferrable

assets but should be set to FALSE for things such as memberships. Where transfers are not

permitted, the token holders will always be able to send the token back to the contract’s

administrative address.

EnforcementOrdersPermitted allows the issuer to execute enforcement orders such as freezing and

confiscating the tokens.

VotingRights means that a holder of one of these tokens has a right to vote in company decisions.

TokenQty is set to 5 to create our 5 assets, with AssetType set to SHC for common share.

Creating the transaction
To define the Tokenized action, we must have access to the Tokenized Smart Contract utility via

Putty.

Check the status of your Bitcoin node, and sync the Smart Contract tool.

$ smartcontract sync

Now, build the tx:

$ smartcontract build A1 coinstorage/a1_coinstorage.json --tx

https://tokenized.com/docs/protocol/actions#action-asset-definition

 16

 www.faiacorp.com

The process asks how many voting systems there are in the contract, and for this there is just 1.

The TX builds correctly, so the hex is tried next:

$ smartcontract build A1 coinstorage/a1_coinstorage.json –-hex

As this looks good, our third command builds and sends the tx to the network:

$ smartcontract build A1 coinstorage/a1_coinstorage.json –-tx --send

Checking https://whatsonchain.com/address/1N9nJMPfJGnhcWrYAtY2DvsHb3cXfVmsTq we can see

almost immediately that the Smart Contract Agent has responded with an A2 – Asset Creation action

which means it has acknowledged our request as a correctly formatted request within the

established ruleset of the Smart Contract and has created the assets.

Click on ‘Hex’ in the decode window and copy the text. Now use the parse command to see what the

contract created:

$ smartcontract parse

006a02bd000e746573742e746f6b656e697a6564041a0241324c6d0a20bbf16c62ed6505533

30329f2db623bdb740f58d1bae21e6af3bf0e314e523d0620013001380160056a0353484372

31120543534752552228466f756e646572732073686172657320696e20436f696e73746f726

16765205074792e204c74642e800193a6989e839181f115

Uses Test Protocol Signature

Action type : A2


``` 

{ 

    "AssetCode":  

"bbf16c62ed650553330329f2db623bdb740f58d1bae21e6af3bf0e314e523d06", 

    "TransfersPermitted": true, 

    "EnforcementOrdersPermitted": true, 

    "VotingRights": true, 

    "TokenQty": 5, 

    "AssetType": "SHC", 

    "AssetPayload":  

"120543534752552228466f756e646572732073686172657320696e20436f696e7374

6f72616765205074792e204c74642e", 

    "Timestamp": 1576827802563777299 

} 

``` 



``` 

{ 

    "Ticker": "CSGRU", 

    "Description": "Founders shares in Coinstorage Pty. Ltd." 

} 

``` 


The assets are handed to the issuer, which in this case is Coinstorage Pty Ltd.

In our next and final piece, we will look at how to transfer these assets between parties.

https://whatsonchain.com/address/1N9nJMPfJGnhcWrYAtY2DvsHb3cXfVmsTq

 17

 www.faiacorp.com

Transferring assets between parties

All Tokenized transfers are handled using the T1 – Transfer action which can manage transfers of all

types with multiple parties and assets.

https://tokenized.com/docs/protocol/actions#action-transfer

I am going to transfer 1 of the 5 shares to an address I have created for the demo.

I created the following JSON file to build the transaction:

$ nano ~/coinstorage/T1_coinstorage.json

The file contains the following info:

{

 "Assets" : [

 {

 "ContractIndex" : 0,

 "AssetType" : "SHC",

 "AssetCode" :

"bbf16c62ed650553330329f2db623bdb740f58d1bae21e6af3

bf0e314e523d06",

 "AssetRevision" : 0,

 "AssetSenders" : [{"Index" : 0, "Quantity" : 1}],

 "AssetReceivers" : [{

 "Address" :

"20c7bd4b65fb23514e3d80373b9828fdf13f01

c90d",

 "Quantity" : 1

 }]

 }

]

}

This defines the transfer action by listing the asset code for our create asset. We are using asset

revision 0 as we haven’t modified it yet. We are sending one token to an address, or eventually any

valid Bitcoin locking script, I created to receive it.

We specify that the sender is sending 1 asset and the receiver is receiving 1 asset.

The address is converted to Hexadecimal using:

$ smartcontract convert YourAddressHere

Append 20 to the front of the hexadecimal string that is generated to create the address.

Now that the transfer action is built, test it with:

$ smartcontract build T1 coinstorage/T1_coinstorage.json –-tx

If the tx validates, send it using:

$ smartcontract build T1 coinstorage/T1_coinstorage.json –-tx –-send

https://tokenized.com/docs/protocol/actions#action-transfer

 18

 www.faiacorp.com

The transfer action request transaction

(348249e7ac0acae0b328730dafc63d6655d33f0e8b54371b29f8f47980637f87) is immediately

followed by the response

(dfc4d02969e2812edfb79f262383bce09a2696ba41eb90b34fa60b8250a4144d) which contains the

settlement action which moves the token into my new wallet.

This token can now be validated by looking at my receiving address

https://whatsonchain.com/tx/348249e7ac0acae0b328730dafc63d6655d33f0e8b54371b29f8f47980637f87
https://whatsonchain.com/tx/dfc4d02969e2812edfb79f262383bce09a2696ba41eb90b34fa60b8250a4144d

